


The Graduate School of Science's

monthly Seminar!

Potential application: A fuel cell vehicle (FCV) or fuel cell electric vehicle (FCEV)

Title: TiO₂ Nanoparticles for Solar H₂ Production from Water Splitting

Date/ time: 26 June 2020/ 9:00 AM-10:00 AM, **How:** due to covid-19 pandemic, the seminar will be organized online using Microsoft Teams.

Who should attend?

Researchers, academic staffs, M. Sc./M. Eng. students and other senior students are recommended to attend. Interested person (RUPPer or non-RUPPer) can access the Google Form via the URL below for FREE registration **BEFORE 23 June 2020**. <u>https://docs.google.com/forms/d/e/1FAIpQLSeDXQmNE1ASAkSYeqGaiB-iHGUkwW9p-bTIU7FkjmMFouyjeg/viewform</u>

Speaker: Sovann Khan, PhD in Nanomaterials Science and Engineering (Dr. Sovann Khan is a JSPS Post-doc research fellow at Photocatalysis International Research Center, Tokyo Univ. of Science, Japan.)

Join us...to learn and share scientific knowledge!

Contact Info.: Room 503 (STEM Building), Graduate School of Science, Royal University of Phnom Penh, Khan Tuol Kork, Phnom Penh. Mobile: 061-302-017, 012-728-198, Email: gss@rupp.edu.kh, Website: http://www.rupp.edu.kh.

TiO₂ nanoparticles for solar H₂ production from water splitting

<u>Sovann Khan¹</u>, Norihiro Suzuki¹, Chiaki Terashima¹, Akira Fujishima¹, Heechae Choi³, Sohye Cho⁴ and Ken-ichi Katsumata¹

¹Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, JAPAN;

 ²Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-0012, JAPAN;
³Theoretical Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, 50939, Cologne, Germany;

⁴Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea;

Abstract:

Global warming due to the combustion of fossil fuels is one of the greatest threats currently facing the planet and mankind. Alternative energy sources must be explored. Hydrogen (H₂) is considered a clean energy, and can be used in fuel cells. Conventional H₂ production uses natural gas and steam reforming method. However, this process emits CO₂, which is one of the greenhouse gases. Since the Honda-Fujishima effect of water splitting by TiO₂ photocatalyst was reported in the 1970s, a new route of hydrogen production using water splitting technology by photocatalysis becomes much more promising and reliable. Activated by light-energy, a semiconductor photocatalyst was considered to be a promising material to harvest the abundant energy from solar light. With water and sunlight being abundant on Earth, it is theoretically possible to produce an unlimited amount of H_2 using semiconductor photocatalysts. However, due to large bandgaps, which can be activated under UV light only, a semiconductor photocatalyst allows only a very small fraction (~5%) of solar energy to be utilised. Another barrier that limits the efficiency of the photocatalytic activities of those semiconductor materials is the rapid recombination rate between light-generated electrons and holes, which are active species in photocatalytic reactions. In this presentation, new approaches for effective production of TiO₂ nanoparticles are presented. Furthermore, several challenges to improve activities of TiO₂ for H₂ production in visible light based on defect engineering (doping) and polymorphic structures will be also discussed.

Keyswords: TiO₂ nanoparticle, water splitting, H₂ production **References:**

- <u>Sovann Khan</u>, Yuta Kubota, Wenwei lei, Norihiro Suzuki, Kazuya Nakata, Chiaki Terashima, Nobuhiro Matsushita, Akira Fujishima, Ken-ichi Katsumata, One-pot synthesis of (anatase/bronze-type)-TiO₂/carbon dot polymorphic structures and their photocatalytic activity for H₂ generation. *Applied Surface Science* (2020) 146650,
- Sovann Khan, Minyeong Je, Donghun Kim, So-Hye Cho, and Taeseup Song*, Heechae Choi, Mapping point defects of brookite TiO₂ for photocatalytic activity beyond anatase and P25, *Journal of Physical Chemistry C* 124 (2020) 10376-10384
- Heechae Choi, <u>Sovann Khan</u>, Junghyun Choi, Dinh T. T. Duong, Seung Yong Lee, Ungyu Park, Kwang-Ryeol Lee, Seungchul Kim, and So-Hye Cho, Synergetic control of band gap and structural transformation for optimizing TiO₂ photocatalysts, *Applied Catalysis B: Environmental* 210 (2017) 513-521
- Sovann Khan, Haneol Cho, Donghun Kim, Sang Soo Han, Kyu Hwan Lee, So-Hye Cho, Taeseup Song, and Heechae Choi, Defect engineering toward strong photocatalysis of Nb-doped anatase TiO₂: Computational predictions and experimental verifications, *Journal of Applied Catalysis B: Environmental* 206 (2017) 520-530.

Sovann's publications found here Google scholar and ORCID

ខន សុវណ្ណ

Name: Sovann Khan

JSPS Postdoctoral Researcher at International Photocatalysis Research Center, Tokyo University of Science

Address	:	2641 Yamazaki, Noda-shi, Chiba-ken 278-8510 JAPAN
Telephone	:	+81-90-6718-7504
E-mail	:	sovannkhan@gmail.com
Homepage	:	www.sovannkhan.weebly.com
WORK EXPERIENCES		

12 November 2018~11 November 2020/Postdoctoral Researcher Japan Society for Promotion of Science, JSPS and International Photocatalysis Research Center, Tokyo University of Science, Noda-shi, Chiba-ken, Japan (https://www.rs.tus.ac.jp/pirc/en/index.html)

02 November 2017~11 November 2018/Postdoctoral Researcher

Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), South Korea (www.kist.re.kr)

EDUCATIONS AND TRAININGS

01 September 2012~18 August 2017 **Doctoral degree** (GPA 4.2/4.5)/Nanomaterials Science and Engineering, Korea Institute of Science and Technology (KIST) and University of Science and Technology (UST), South Korea

02 March 2010~24 February 2012 Master degree (GPA 3.7/4.5)/Environmental Engineering, INHA University, South Korea

01 September 2007~26 September 2008

Certificate of Teacher (Pedagogy) /Biology and Laboratory Management, National Institute of Education (NIE), Phnom Penh, Cambodia

01 September 2003~24 August 2007

Bachelor degree (GPA 84.9/100)/Biological Science, Royal University of Phnom Penh (RUPP), Phnom Penh, Cambodia